Fundamentals, Optimization and Practical Aspects of (U)HPLC Part 1

Definitions and basic concepts of <u>Ultra High Performance Liquid Chromatography</u>

R

Fundamentals, Optimization and Practical Aspects of (U)HPLC

When in this tutorial (U)HPLC is used in descriptions it applies to HPLC and UHPLC; when UHPLC is used is pertains to specifics Ultra High Performance Liquid Chromatography

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

Overview (U)HPLC Tutorial

- Part 1: Basic Principles of (U)HPLC
 - Fundamental considerations on (U)HPLC for (bio)chemical analysis
 - Definitions, equations and important considerations of (U)HPLC
 - Explain "Van Deemter" (and other) equations and about there role in obtaining a certain plate number in the fastest way
- Part 2: Optimization of (U)HPLC systems
 - Kinetic Plot Theory
- Part 3: (U)HPLC Column Technology
 - The role of column temperature in (U)HPLC
 - About superficially porous particles versus totally porous particle columns
 - And what about monoliths?
 - HPLC Chips for UHPLC
- Part 4: Practical aspects of (U)HPLC
 - Influence of high pressure on UHPLC performance, especially by frictional heating
 - Requirements for (U)HPLC equipment

Two key ingredients for this evolution:

- Introduction of new, ultra-high pressure stable, sub-2-µm diameter particles in 2004 followed by the introduction of superficially porous, low diameter particles in 2006
- Next generation HPLC instrumentation capable to deliver solvents at ultrahigh pressure and able to conserve the ultra high efficiency separation of columns packed with these new particles

UHPLC versus HPLC

New Column Technologies:

Superficially porous (SP) particles

Next generation HPLC instrumentation:

Totally porous (**TP**) sub-2-micrometer particles

- Delivering mobile phases at ultra high pressure (now up to 1500 bar)
- Systems optimized to conserve peak fidelity before, during and after separation
- Does this mean that UHPLC differs from HPLC?

UHPLC has extended abilities compared to HPLC by:

Basic theory of HPLC applies as well to UHPLC

Mind this nomenclature!

g

Can UHPLC be Marked as an Innovation?*

- Pioneered by Waters Inc. with BEH particle technology and UPLC[®] system (Acquity) followed by Advanced Materials Technology with HALO particles.
- A plethora of (U)HPLC systems and column technology has followed since.

Waters: UPLC[®], Acquity H-Class, I-ClassAgilent: Infinity 12XX Series,Thermo: Vanquish UHPLC SeriesShimadzu: Nexera X2

*An innovation is something original, new, and important in whatever field that <u>breaks into a market</u> or society. This is accomplished through <u>more effective products</u>, <u>new processes</u>, <u>services</u>, <u>technologies</u>, <u>or ideas</u> that are readily available to and <u>successful</u> in markets, governments and society. Source: <u>http://en.wikipedia.org/wiki/Innovation</u>

Presented on 11/10/2014

The Chromatography Optimization "Trilemma"

Resolution

Quoted from Prof. Georges Guiochon*

"the primary objective of an analysis by HPLC separation is to identify a maximum number of analytes (**resolution**) in the minimum amount of time (**t**₀) and to derive an accurate quantitative estimate of their concentrations (**sensitivity**).

*F. Gritti and G. Guiochon, J. Chromatography A, 1228 (2012) 2–19; Prof. Guiochon passed away, October 21, 2014

The Chromatography Optimization "Trilemma"

Obtain the best possible resolution in the shortest possible time

Presented on 11/10/2014

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

Presented on 11/10/2014

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

$$R_{s} = \frac{2(t_{R,2} - t_{R,1})}{(w_{b,1} + w_{b,2})}$$

Which can be reformulated*:

$$R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha - 1}{\alpha}\right] \cdot \left[\frac{k_{2}}{k_{2} + 1}\right]$$

The indices are important!

*<u>Purnell equation</u>!

- N_2 plate number of the second peak
- α selectivity for two adjacent peaks ($\alpha = k_2 / k_1$)
- k_2 retention factor for the 2nd peak

* J. H. Purnell, J. Chem. Soc. (1960) 1268.

Presented on 11/10/2014

Other Equations for Resolution^{1,2}

$$R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha - 1}{\alpha}\right] \cdot \left[\frac{k_{2}}{k_{2} + 1}\right]$$

Pernell equation is obtained when one assumes that the width of the first peak equals the width of the second peak.

$$R_{s} = \frac{\sqrt{N_{1}}}{4} \cdot \left(\alpha - 1\right) \cdot \left[\frac{k_{1}}{k_{1} + 1}\right]$$

Is obtained when one assumes that the width of the second peak equals the width of the first peak (also called the Knox equation for resolution).

 $R_{s} = \frac{\sqrt{\overline{N}}}{2} \cdot \frac{(\alpha - 1)}{(\alpha + 1)} \cdot \left[\frac{\overline{k}}{\overline{k} + 1}\right]$

Is obtained when the average width of the first and second peak is used. In this case k is the average of k_1 and k_2 .

¹A.S. Said, J. of High Resolution Chrom. & Chromatography Comm. 2, 193 (1979) ²P. Sandra, J. of High Resolution Chrom. & Chromatography Comm. 12, 82 (1989)

R

0

Ζ

Increase Resolution

Normalized Plot of Individual Terms

R

0

Ζ

Improve Resolution; Selectivity

Selectivity (a) helps best but:

- Is driven by difference in molecular properties (polarity, charge, hydrophobicity, size etc.)
 - "Know your molecules"!!
- Is difficult to predict
 - Experience helps (ask your colleague, check the literature, <u>http://scholar.google.com</u>)
 - Establish retention model for all molecules one is interested in
- Use of optimization software for the separation of multi-component mixtures (ChromSword, DryLab)
 - May become a laborious procedure especially with multicomponent samples
 - Impossible to do with very complex samples >50 components (e.g. tryptic digests, biomedical or environmental samples)

 $\frac{\sqrt{N_2}}{4} \cdot \left| \frac{\alpha - 1}{\alpha} \right| \cdot \left| \frac{k_2}{k_2 + 1} \right|$

R

0

Ζ

С

0

Μ

С

0

n

S

U

n

g

Improve Resolution; Increase Efficiency

High plate number provides:

- Improved resolution
- Narrower and therefore higher peaks resulting in better signal/noise ratio
- Reduction of the separation time
- Higher peak capacity

R

Peak capacity is defined as the number of peaks or zones Z_p that can be separated (at specified R_s) over the "path length" of a chromatogram (or elution volume range $V_{max} - V_{min}$) in the separation system

*Taken from J. Calvin Giddings, Unified Separation Science, pg. 105 and references cited therein

Presented on 11/10/2014

Peak Capacity (Z_p) - Isocratic Elution*

$$Z_{p} = \frac{\sqrt{N}}{6R_{s}} \ln(1 + k_{last}) + 1$$

- : peak capacity (for uniform distribution in chromatographic space)
- : retention factor of the last peak
- : required resolution (base line separation: $R_s \rightarrow 1.5$)

LC column, N = 25,000, k' = 20, $Z_p = calculate$

*Taken from J. Calvin Giddings, Unified Separation Science, pg. 106 and J.C. Giddings, Anal. Chem. 1967, 39, 1027–1028

Z_p k'_{last} R_s

Assuming linear solvent strength gradient*

$$Z_{p} = 1 + \frac{t_{g}}{\frac{1}{n}\Sigma_{1}^{n}w} = 1 + \frac{t_{g}}{w_{av}}$$

 t_g = gradient time

 w_{av} = average peak width

*U.D. Neue, Theory of Peak Capacity in Gradient Elution, J. Chrom. A, 1079, 153, 2005 and references cited therein.

- Solutes do not elute in an equidistant way
- Congestion in the chromatographic space is leading to peak overlap/co-elution which becomes particularly relevant when there is a high number of solutes in the sample

Peak Capacity (Z_p) in Practice

LC/MS Toxicology Test Mixture with 25 components analyzed on Zorbax Eclipse Plus C18, 1.8 µm, 100x2.1 mm*

R

0

Ζ

*Courtesy of Agilent Technologies

Presented on 11/10/2014

Giddings et al. have assumed that the occurrence of a peak in the chromatographic space (from t_0 till t_{last}) is a randomly appearing discrete event (Poisson distribution).

Depending on the width of each peak (which determines the peak capacity) and the number of solutes n_c in the sample, the number of solutes s that elute as a single band is given by:

$$s = n_c \, \exp\!\left(\frac{-2n_c}{Z_p}\right)$$

In the example before and n=10

* J. C. Giddings, Unified Separation Science, pg. 131 and references cited therein

J. C. Giddings & J. Davis, Anal. Chem., <u>55</u>, 418 (1983); <u>57</u>, 2168 (1985)

$R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha}{4}\right]$	$\frac{-1}{\alpha} \left[\frac{k_2}{k_2 + 1} \right]$	
$N - \underline{L}$	Action	Constraint
H	Increase length of the column	Longer analysis time Higher column pressure
	Decrease H(ETP) by	Higher column pressure

using smaller particles

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

t

n

g

Permeability of Packed Columns*,**

From chemical engineering: For an open tube

$$u_s = \frac{F}{A} = \frac{d_c^2}{32} \cdot \frac{\Delta P}{\eta L}$$

 u_s = superficial velocity. This equation is known as the Hagen-Poisseuille equation

For a packed bed

$$u_s = \frac{F}{A} = K_o \cdot \frac{\Delta P}{\eta . L}$$

 K_o = specific permeability. This equation is known as the Darcy equation***

How does K₀ relate to particle size?

*Cramers et al, Chromatographia, 14, 439 (1981) **Desmet et al, Anal. Chem. 2005, 77, 3986-3992 *** http://en.wikipedia.org/wiki/Darcy%27s_law

Presented on 11/10/2014

Relation between Particle Size and Column Backpressure

Permeability of Packed Columns*,**

$$u_s = u_e \mathcal{E}_e$$

- u_e = interstitial solvent velocity
- \mathcal{E}_e = interparticle porosity

$$u_e = \frac{d_p^2}{180} \cdot \frac{\varepsilon_e^2}{(1 - \varepsilon_e)^2} \frac{\Delta P}{\eta L}$$

Kozeny-Carman equation based on interstitial velocity (flow through a <u>infinitely wide</u> particulate bed)

$$u_{s} = \frac{d_{p}^{2}}{180} \frac{\varepsilon_{e}^{3}}{(1 - \varepsilon_{e})^{2}} \frac{\Delta P}{\eta L}$$

Kozeny-Carmen equation based on superficial velocity which is also written as:

$$u_s = \frac{d_p^2}{\Phi} \cdot \frac{\Delta P}{\eta L}$$

in which Φ is the dimensionless flow resistance factor. With ε_e 0.4 its value is 1012.5

*Cramers et al, Chromatographia, 14, 439 (1981) **Desmet et al, Anal. Chem. 2005, 77, 3986-3992 http://en.wikipedia.org/wiki/Kozeny%E2%80%93Carman equation

Relation between Particle Size and Column Backpressure

Permeability of Packed Columns*,**

According to chromatographers:

 $u_0 = \frac{L}{t_0} = B_0 \frac{\Delta P}{\eta L}$

u_o chromatographic solvent velocity with

$$u_s = \varepsilon_T u_0$$

B₀ is called chromatographic permeability

$$u_0 = \frac{d_p^2}{180} \cdot \frac{\varepsilon_e^3}{\varepsilon_T (1 - \varepsilon_e)^2} \frac{\Delta P}{\eta L} = \frac{d_p^2}{\varepsilon_T \Phi} \cdot \frac{\Delta P}{\eta L}$$

Kozeny-Carman equation based on chromatographic solvent velocity

 Φ_0 chromatographic flow resistance factor (has the value of 700 for a good column)

$\Delta P = \frac{\Phi_0}{d_p^2} . u_o \eta L$

 $\varepsilon_T \Phi = \Phi_0 \qquad B_0 = \frac{d_p^2}{\varepsilon_T \Phi} = \frac{d_p^2}{\Phi_0}$

$R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha}{\alpha}\right]$	$\begin{bmatrix} -1 \\ k \end{bmatrix} \cdot \begin{bmatrix} k_2 \\ k_2 + 1 \end{bmatrix}$	
N = -	Action	Constraint
H	Increase length of the column	Longer analysis time Higher column pressure
	Decrease H(ETP) by using smaller particles	Higher column pressure

R

0

Height Equivalent to a Theoretical Plate (HETP)

The height equivalent to a theoretical plate (HETP) H, is the hypothetical length in a column which is required to reach equilibrium of the distribution of the solute between a moving mobile and stationary phase.

H depends on:

- Particle size and particle porosity
- Packing bed porosity and structure
- Solute diffusion coefficient
- Solvent flow velocity
- Retention of the solute

Plate Number

N = L/H

Column length L

(Simplified) Van Deemter Equation*

$$H = A \cdot d_p + \frac{B \cdot D_m}{u} + \frac{C \cdot \frac{d_p^2}{D_m}}{D_m}u$$

A-term B-term C-term

A-term describes the solvent velocity inequalities through the bed and depends on the particle size

B-term describes the influence of solute diffusivity and decreases with solvent velocity

C-term describes the mass transport in and out of the particles, depends on particle size and solute diffusivity and increases with solvent velocity

$$u_{opt} = \frac{D_m}{d_p} \sqrt{\frac{B}{C}}$$

$$H_{\min} = (A + \sqrt{B/C}) \cdot d_p$$

*van Deemter J.J. et al., Chem. Eng. Sc. 5: 271–289 (1956).

Height Equivalent to a Theoretical Plate (HETP)

Van Deemter Equation: A-Term

Eddy Dispersion by different length of pathway

Flow velocity profile between particles

R

Height Equivalent to a Theoretical Plate (HETP)

Van Deemter Equation: *u*_{o,opt}

Column pressure increases with inverse particle size square.

Velocity at the minimum increases with the inverse of the particle size

 $u_{o,opt} d_p \approx \text{constant}$

The pressure required to operate a column at $u_{o,opt}$ is inversely proportional with the cubic power of d_p

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

u

n

g

Height Equivalent to a Theoretical Plate (HETP) Knox Equation: $u_{o,opt}$

In the Knox equation, it is assumed that the eddy dispersion (A-term) depends on the solvent velocity

$$H(ETP) = Au_0^{1/3} + B/u_0 + Cu_0$$

The Knox equation is preferably used in a dimensionless formulation with:

$$h = \frac{H}{d_p}$$
 and $v = \frac{u_0 d_p}{D_m}$

h is called reduced plate height, $\nu\, {\rm is}$ called the reduced velocity. They are dimensionless parameters

$$h = a v^{0.33} + \frac{b}{v} + c v$$

Presented on 11/10/2014

Knox equation is non-linear

HETP and Pressure Drop vs. Solvent Velocity

R

0

Ζ

How to achieve a particular plate number $N_{required}$ (N_r), say 20,000 plates, in the shortest time possible at a given maximal column pressure available?

According to J.H. Knox and M. Saleem, J. Chromatogr. Sci., 7 (1969), p. 614 R

UHPLC - Essentials

van Deemter Plot reordered*

L (50 mm) and d_p fixed, select optimal u_o

The optimization can be achieved by defining:

- 1. The maximum pressure capability: ΔP^{max}
- 2. The number of plates that one wants to obtain
- 3. A set of columns for which *L*, d_p and linear velocity is <u>continuously</u> varied until ΔP^{max} pressure is reached.

Equations that allow to achieve this goal:

$$L_{r} = N_{r}hd_{p} \text{ length required to achieve } N_{r} \text{ (}h \text{ is reduced plate height)}$$
$$u_{0} = L_{r}/t_{0} = \left(N_{r}hd_{p}\right)/t_{0}$$
$$\Delta P = \left(u_{0}\eta L_{r}\right)/B_{0} = \left(u_{0}\eta L_{r}\Phi_{0}\right)/d_{p}^{2} = \left(h^{2}\Phi_{0}N_{r}^{2}\eta\right)/t_{0}$$

*J.H. Knox and M. Saleem. J. Chromatogr. Sci., 7 (1969), p. 614

$$t_0 = \frac{h^2 \Phi_0 N_r^2 \eta}{\Delta P^{\max}} = \frac{E N_r^2 \eta}{\Delta P^{\max}}$$

Solving for t_0 :

Shortest time to generate a required plate number constrained by a maximum back pressure is obtained when $E = h^2 \Phi$ is minimal (E is the so-called separation impedance). This is the case (with Φ_0 is constant) when one works in the minimum of the *H*-*u* curve and thus at $u_{0.opt}$.

For ΔP^{max} an optimum particle size, $d_{p,opt}$ can extracted:

$$d_p(opt) = \left(\frac{\Phi_0 \eta u_{0,\min} h_{\min} N_r}{\Delta P^{\max}}\right)^{1/2}$$

Particle size has to increase in order to obtain a higher N_r in the shortest time!!

*J.H. Knox and M. Saleem. J. Chromatogr. Sci., 7 (1969), p. 614

How to Obtain the Required Plate Number in the Shortest Time?

200 bar			
N _r	t ₀	d _p	L
1000	0.2 s	0.5 μm	1.1 mm
10000	20 s	1.7 μm	35 mm
100000	2000 s	5 μm	1100 mm
1000000	2.3 days	17 μm	35 m
400 bar			
1000	0.1 s	0.39 μm	0.78 mm
10000	10 s	1.22 μm	24.4 mm
100000	1000 s	3.87 μm	774 mm
1000000	1.16 days	12.25 μm	24.5 m
1000 bar			
1000	0.04 s	0.25 μm	0.5 mm
10000	4 s	0.77 μm	15.5 mm
100000	400 s	2.45 μm	490 mm
1000000	0.46 days	7.75 μm	15.5 m

Unretained retention, *optimal particle size* and column length at pressure limited situations in HPLC R

How to Achieve very Large Plate Numbers*

*Separation of styrene oligomers (molecular weight standard for MW = 580). The numbers in parentheses indicate the number of styrene units in the oligomer. Column: **monolithic silica, effective length: 1130 cm**. Mobile phase: acetonitrile-water (95/5). $\Delta P = 39.5 \text{ MPa}$. u = 1.73 mm/s. Detection: 210 nm. Temperature: 30 °C. The inset is a magnification of the chromatogram for the pentamers.

*Nobuo Tanaka et al., Anal. Chem. 2008, 80, 8741-8750.

Presented on 11/10/2014

Lessons learned so far

- In (U)HPLC separations, keep in mind that selectivity works best in obtaining resolution for samples with few compounds, but may require a laborious optimization procedure.
- The objective in (U)HPLC is to obtain the best resolution in the shortest possible time.
- Peak capacity is of limited value as a performance parameter. Statistical peak overlap is unavoidable and a practical constraint.
- Permeability is a crucial column property and depends on the inverse square of particle diameter. Its magnitude differs by the kind of solvent velocity used.
- Very high efficiencies (N > 50,000) require bigger particles and longer columns at the cost of time
- Medium efficiencies (N < 50,000) are obtained in shorter time with very small particles and shorter column lengths at the cost of pressure

- Dr. Monika Dittmann, Agilent Technologies, Germany
- Dr. Ken Broeckhoven, Free University of Brussels, Belgium

A PDF copy of this tutorial will be available on http://www.rozing.com in the menu "Publications" and menu item "My Tutorials" (registration required)