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Summary

A new eguation which describes the interdependence of
instrument band spreading, injection volume and input
profile is proposed and experimentally verified in two
modes: 1. without a column; 2. with a column.

It is shown that under equivalent conditions both modes
are in excellent agreement. The method of calculation of
the variance of a response function appeared to be of
utmost importance in correctly interpreting the ex-
perimentally observed interdependence of instrumental
band spreading and injection characteristics.

Introduction

The use of small volume, high efficiency columns puts
heavy demands on instrument design and its constituent
parts such as sampling system, detector, connecting tubing,
fittings, amplifier time constants and data acquisition de-
vicES.

Hydrodynamically, external band spreading is mainly caus-
ed in flow-through sub-systems of a chromatographic in-
strument whereas improper handling of analogue data or
insufficient analogue-to-digital sampling rates cause tem-
porarily incorrect representation of the responding signals,
The former will seriously affect separation performance
and. detection limits which can be achieved by very effi-
cent, small volume columns. Its relative and absolute
magnitude are therefore of utmost importance to instrument
design and have been the subject of investigation in a large
number of papers [1-12].

The theoretical basis stems from the paper on the mathe-
matical treatment of the response of independent sub-
systems to different input functions by Sternberg [1]. Al-
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though the above mentioned investigations provided the

chromatographer with sufficient insight into the pheno-

menon and causes of external band spreading they obscur-
ed an unambiguous and rigid description of the latter for
two reasons:

a) by assuming that the chromatographic sub-systems are
mutually independent;

b) by using methods to calculate variances of response
functions which are not accurate and therefore violate
the assumptions in the mathematical model as treated
by Sternberg [1].

In this paper the additivity of variances of response func-

tions generated in chromatographic sub-systems is re-

investigated together with the influence of the applied
calculation method on the output functions obtaine.

Theoretical

The determination of external band spreading in a chroma-

tographic system can be performed in two ways:

a) without a column in the system. We call this the short
circuited mode;

b) with a column in the system. We call this the normal
mode.

The short circuited mode

Basically the shape of the response function to an excita-
tion of the chromatographic system (concentration signal)
is determined by the shape of the input function and the
shape of the pulse response of the system [1, 13].

In mathematical terms, the variance of the output function
is the sum of the variances of the input signal, af,(im-), and
the pulse response of the system o?,(o) (Fig. 1)

03(ext) = 03(in3) + 070 ey

For a well defined injection volume, Vin;j» the variance can
be calculated as the second normalized central moment M, .
For example, the volume variance of a rectangular input
function is given by Vi,;/12 whereas for a Gaussian input
function the variance is given by V?nj/27r. In this case the
volume standard deviation is Vi,,j/\/zn and can be calculat-
ed from the half width at 0.607 of the peak height of the
Gaussian input function.

Calculating the volume standard deviation of a rectangular
function in this way, which we will call the ‘hand’ method,
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Fig. 1
Model representation of bandbroadening in short circuited mode,

necessarily leads to inaccurate values of the variance.
Moreover it will be clear that the ‘hand’ method provides
values of the variance which are strongly dependent on the
peak shape, whereas the second normalized central moment
always represents the variance of a signal correctly.
Taking the shape of the input signal into account we can
rewrite (1) as
2
O3(ext) = “Dlzlu‘ + 030 (2)

in which D? is the normalization factor depending on the
peak shape of the input signal and the calculation method.
Table I summarizes the values of D? for the above mention-
ed peak shapes.

Table I. Values of D? for different calculation methods on
input functions with different shapes

input function
Calc. method Rectangular | Gaussian
Moments 12 21
"hand’ 4 o

From eq. (2) it is expected that if the basic hypothesis is
correct a plot of 03 xy) versus Vi, would provide a linear
function with slope 1/D? and the variance of the impulse
response of the instrument, 03(0), as the axis intercept.

Normal mode

In this case (Fig. 2) the variance of the output function,
O3toty- Can be written as

2 ~ 2 2
Oy(tot) = Ov(ext) T Ov(col) - (3)
2 2
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Fig. 2

Model representation of bandbroadening in chromatographic system.
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With (2), (3) is transformed in
i2 .
F:‘J + 02(0) * O(col) @
in which 03,(“,1) is the volume variance of the impulse
response of the column. In order to evaluate of,(ext) from
(3) 0‘2,(001) has to be known, This volume variance can be
calculated from (5)
€t Vcol(1 + k')
Neot
where €;, Vo1, k' and N, are the total porosity of the
column bed, the column volume, the capacity factor and
the number of theoretical plates generated by the column
respectively. The values of €, V.o and k' can be obtained
with fair accuracy for any column.
However, the determination of N, is more painstaking
because only oﬁ(tot) is observed from which only N can
be evaluated which is necessarily made up by 03,(c01) and
a?,(ext) (eq- (3)). To solve this problem two approaches can
be applied:
1. if U‘z,(ext) < 0"2,((:01) which is achieved when Vinj =0
and/or with large values of k' or Vg then Ngps = Negi;
2. by plotting the observed variance, af(tot), of the obtain-
ed response functions versus the retention times
squared, tg, for a certain number (n) of eluted com-

2 —
Oy(tot) =

()

Oy(col) =

pounds [14].
This approach is elucidated by rewriting eq. (3) in time
units
Oftot) = Ot(ext) T Oi(col) - (6)
With
th
2 - ———
ot(CDl) Ncol ? (7)

tr being the retention time of an eluted component,
eq. (6) is transformed into
tR
Of(tot) = Of(ext) * N 8
col

A plot of 6oty versus tk, according to eq. (8), should bea
linear function with axis intercept a?(ext) and slope 1/N,.
By varying Vi, its influence on o3 (exyy can be investigated
with eq. (4) and compared with the results from the short
circuited mode by using the same two calculation methods.
The underlying assumptions for the above mentioned second
approach will be discussed later.

Experimental

Apparatus, Chemicals and Materials

A Hewlett-Packard 1084 B Analytical High-Pressure Liquid
Chromatograph was modified to reduce the external dead
volume (which included injection system, tubing, fittings
and detector cell) to less than 15mm?® by using stainless
steel (316) tubing with 0.15 and 0.10mm i.d. and 15" 0.d.,
zero dead volume fittings (Swagelok 11—6") and a detector
cell of 4.0mm?3.
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The time constant (time required to rise from 10--90%) of
the detector signal board was changed from 200ms to 10ms.
The analogue signals produced by the variable wavelength
detector of the instrument were digitized by a HP 18652A
A/D converter and transferred to a HP3356A datasystem
which operated at a sampling rate of 8 Hz. The moments,
retention times and half-widths at 0.607.x height were
calculated by a series of programs, written in Lab Basic.
Acetonitrile (p.A. grade; E. Merck, FRG) and water (dis-
tiled and deionized) were premixed in the eluent bottle.
0DS Hypersil® (5 pm) was used as the stationary phase in a
stainless steel (316) column of 100 x 2.0mm equipped with
low dead volume (< 1.5mm?) fittings containing porous
stainless steel (316) frits with an average pore diameter of
lum (Mott Metallurgical Corp., USA). In the short circuit-
ed mode the sample consisted of 0.1%e (w/v) diethyl-
phtalate (GC-grade; E. Merck)dissolved in the mobile phase.
In the normal mode a 5 components sample (phenol,
benzonitrile, nitrobenzene, 2-chloronitrobenzene and tol-
uene all GC-grade, Chem. Service, PA, USA, and approxi-
mately 0.1% w/v per component, except toluene which was
1% w/v) dissolved in the mobile phase was used.

Curve fitting of a second order equation was performed
with a HP-85 programmable desk top calculator.

Results and Discussion

Short Circuited Mode; Application of the Moment Method

in these experiments the column was removed from the
chromatographic system and replaced by a nommal zero
dead volume fitting (Tlﬁ-", Swagelok). The mobile phase,
water/acetonitrile (60/40% v/v) was run at calibrated flows
of 0.13, 0.53, 1.22 and 2.57cm?®/min respectively. At
each flow the injection volume was varied from 2 to 4, 8,

16, 25, 40, 60 and 90 mm?3.

From the signal obtained the moments were calculated by
the Lab Data System in time units. The volume variances
were calculated by multiplication of the second normalized
central moment, M,, with the square of the flow rate.
Table Il summarizes the experimental data points,

Table 1l. Experimental data points (statistical moments;
short circuited mode)

3 3 3 3
cm cm cm cm
Flow 0.13 m 053 Ff"l’l‘ﬁ 1.22 m 257 Fﬁl—l:]—

2 2 2 2| 2 2] 2 2
Vinj ytext) | D Oy(ext)| D oy(ext)| D Ty(ext) D

(mm®) (mm®) (mm®) {mm®) (mm®)

411569 1{1.01 | 49.86(224 | — — - -
16 | 2766|101} 55221224 945|110 | 176.3|0.98
64 | 45.33{191| 7207|267 | 103.2]|2.76 | 215.1{1.16

L Short circ.
Moments (0.53 cm¥min
12 —Theoretical
o -—Experimental
T 8 D/
o?
6 o
4
-]
2o
0 20 30 40 50 60 70 &0 90
Vi (MM ——
Fig. 3

Dependence of DZ-factor on injection volume.

If the basic hypothesis (eqs.(1) and (2)) is correct, that is,
the variance of the output function is the sum of the
variances of the input signal, V{,;/D?, and the impulse
response of the system, 0‘2,(0), and we assume that we can
estimate 03(0) by graphical extrapolation of oi(ext) to
anj = 0 the calculated value of D? from eq. (2) should be
a constant for all injected sample volumes and should have
the theoretical value of 12. Table I and Fig. 3 clearly show
that this is not the case but on the contrary reveal that D?
or D is a function of Vi,; resp. Vig;. Although this result
also was obtained by previous workers [15—21] and calls
for evaluation of the dependence of D* and/or 02exy on
Vin; so far this has not been described.

As in all cases the calculated D?-factor is smaller than the
theoretical value and appears in the denominator of the
first term in eq.(2), it can be argued that if we stick to
the original hypothesis the measured o (exy is larger than is
expected by relation (2). So one has to account for an
additional broadening in the basic eq. (2). Therefore other
possible correlations between the experimental data were
considered.

Two converging regressions of the data in Table 11 were
obtained. Second order non-linear regression of the type
y =ap +a;x +a,x in which y = 03(ext) and x = Vj,; and
linear regression of the type y =bg +b; x inwhichy = 0y (exy)
and x = Vj,;. The results are summarized in Tables [Il and
IV and Figs. 4 and 5. In particular the second order re-
gression (Table III) shows a very high non-linear correlation

Table II. Values resulting from second order regression of
os(ext), Vinj on entire set of data pairs as in Table |1

ag aq as r
; §“'2
2 an-2 yx
Flow | (=06y(0) (=B§) SCX \;’obs n
3
) | imm® Jimm®) (mm® | (%)
min

256 | 826 [3.61]1200 313 | 1921|228 | 3384|145 0.13 1 1527289 )0.0800 | 099993 | 40 |17 }8
625 [134.9 [5.07 | 172.2 {504 | 2325{4.10 | 4095(2.51 063 | 47.87 1273 |0.0865 | 089972 | 84 ;130 '8
1600 [245.1 |6.86 | 205.6 |6.46 | 3568|5.78 | 586.8(3.75 122 ) 8466|384 100732 | 099891 | 17.1 {47 |8
3600 |466.3 |7.92 [ 5132 |7.74 | 5609|7.49 | 840.1|5.20 | 257 | 16364 |7.86 |0.0643 | 099899 | 221 |39 |8
8100 [906.1 {9.06 |998.0 |853 [1020.4(8.53 |1400.6|6.53
n: number of data pairs
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coefficient and a low relative scatter of the experimental
datapoints. It is easily calculated that v/ap =~ by and that
Va, =b; ~1/D.

This leads to the following, experimentally based, equations

_ Vinj
Ov(ext) = 0v(0) ¥ 3 (9a)
and
) Vig V' 5, . 20v© Vinj . Vinj
Oy(ext) = (UV(O) + _D_ =0ovo) t D t D2
(ob)

in which 0‘2,(0) represents the variance of the impulse res-
ponse of the system which, by definition, equals oé(ext) for
zero injection volume, V#,;/D? represents the variance of
the input signal and the cross term 2 gy (g Vinj/D represents

Table IV. Values resulting from linear regression of 0 (exy).
Vinj (statistical moments; short circuited mode)

bo by §n-2
1 ~p— ¥x
Flow | (=ayg)!| {=5)| D S -t P
3
cm 3 3
(ﬁ—n') {mm”~) (mm=) 1 (%)

0.13 4.05 0.2915{3.43099925|0.38 | 29
0.53 6.39 0.2770 |3.61 { 099935(0.33 | 2.3
1.22 8.73 0.2571 1389 | 099768| 0.60 | 3.4
2.57 |13.00 0.2725|3.67 1 099677 0.62 | 28

o 0 0O

Table V. 0, (o) and D-values calculated from coefficients ag
and a, as summarized in Table 111

Flow ov(0)

{cm3/min) (mm°) D
0.31 3.91 3.54
0.63 6.92 3.40
122 9.20 3.70
2.57 12.79 394

1000}, Short circ. o/

Moments
053 em3/min
800F
Uf{exsfs)o
fmmS®)
£007
200} c/

10 20 30 40 50 60 70 80 90
3 .

Fig. 4 Vioj (M)

Dependence of volume variance of response function on injection

volume in short circuited mode by applying statistical moments.

644 Chromatographia Vol. 14 No. 11, November 1981

the additional broadening caused by the interdependence
of instrumental broadening and the width of the input func
tion. In qualitative terms, it can be interpreted that the
effect of instrumental broadening is more severe for small
than for large injection volumes.

Moreover the high convergence of these regressions is also
reflected in the close agreement of the calculated D- and
Oy(0)-values as shown in Tables IV and V. The appearance
of eq. (9) is as well supported by the experiments of
Kirkland et al. [10].

Application of the ‘Hand’ Method

The experimental volume variances of the response func
tions are now calculated from the width at 0.607 of the
peak height. The data are summarized in Table VI. Proceed-
ing as before, that is, to estimate 03(0) from graphical extra-
polation of 03(exry to Viyj = 0, the calculated value of D’
appears more or less constant and approaches the value of
4 which was predicted in Table I. Therefore it seems as if
the theoretical relation (2) indeed is experimentally con-
firmed.

Table VI. Experimental data points (‘hand’ method; short
circuited mode)

3 3 3 3
cm cm cm cm
2 2 2 2 2 2 2| 2 2
Vini [Ov(ext) D% oviexty | D ovlext) | P"|oviext) | D
(mm®) (mm®) (mm%) (mm®) {mm®)
4 1094 — 25.00( — 2228 — - -

16 14.4513.84| 27.67|5.53 24.78|5.08| 61.70 -

64 25391424 34.34|6.69 33.68(5.31 81.70|2.40
256 62.2614.93| 70.22(5.63 66.95{5.66( 122.70|378
625 | 148.7 [4.51| 1409 [5.38 1372 |5.471| 193.0 |453
1600 | 3705 |4.44| 347.1 |4.96 3349 |5.11| 406.1 |45
3600 | 832.3 [4.38| 780.1 (4.77 7726 [4.79| 8856 (433
8100 1873.7 (4.35(1788.4 |4.59 | 1761.8 [4.65|1936.0 4.311

40t Short circ.
‘hand’ o; moments a
053 cm3/min

I o
ov(axt) °
{mm?) %

201

10 20 30 40 S50 60 70 80 90
Vinj {mm?3) —

Fig. 5
Dependence of volume standard deviation of response function on

injection volume in short circuited mode by applying ‘hand’ method
and statistical moments.
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Fitting a least square parabola ot the previous type to these
data resulted in Table VII in which the values for oy and
D, calculated from a, and a, , are also shown.

The overall relative scattering of the data is very small and
a perfect non-linear correlation is exhibited in this table.
The calculated D-values are remarkably close to the theo-
retical value.

Again a possible linear relationship between oy(exy and
Vin; Was investigated and shown in Fig. 5 for a flow 0f 0.53
cm?/min. From this figure it is clear that the assumed re-
lationship starts at an injection volume of approximately
§mm?>. All other flows show the same trend. Fitting a least
square line to the obtained data (omitting those at 2 and
4mm®) resulted in the characteristic values shown in
Table VIIIL. The overall relative scattering of the data is small
and the linear correlation extremely high. In this case the
calculated D-values show the largest average deviation from
the theoretical value.

In contradiction to the regression results obtained from
statistical moments (Tables III and IV) here the regression-
coefficients show an inconsistent picture and moreover a
negative coefficient a; is obtained.

Normal Mode

In this experiment the tubings from injection system and
detector were connected to a 100 x 2.0mm column packed
with ODS Hypersil® (5um) (Fig. 2). A mobile phase of
water/acetonitrile (60/40% v/v) was run at 0.54cm?®/min
through the instrument and the mixture of 5 components
was injected with varying volumes.

Table VII. Values resulting from second order regression on
data pairs calculated by ‘hand’ method (short circuited mode)

an-2
Oy(0) D gn_2 SCX

Flow (=\/a0) (= \/1/32) a r ¥x Vnbs n

3

cm 3 6

(ﬁ’ﬁ) {mm~) (mm7) | (%)

0.13 | 3.39 2.07 ~0.39 {1.00000| 1.6 0.4 8

053 | 5.44 2.08 ~1.37 1099999 2.2 0.6 8

122 | 5.7 2.09 ~1.37 1099999 | 29 0.7 8

257 | 8.32 2.03 ~-1.02 (0999951 7.4 1.4 8

Table VIII. Values resulting from linear regression of Oy(ext) s
Vinj- Data pairs for Vinj = 2 and 4 mm® omitted (*hand’
method; short circuited mode)

§n~2

an-2 VX
Oy(0) D r Scx v n

Flow (=bg) | (=1/by) y

tem>/min) | (mm>) (mm3) | (%)
0.13 0.64 212 0.99969 | 0.40 2.1 6
0.53 1.24 222 0988851 0.74 39 6
1.22 1.12 2.23 0.99871 | 0.78 4.1 6
267 401 230 |099676| 121 | 57 | 6

Chromatographia Vol. 14 No. 11, November 1981

vererminarion oy ne tneorerical pire mumoer (\Neg) )

At constant linear velocity (uo), particle size (d,), mobile
phase composition, temperature and column bed geometry,
the theoretical plate number (N) is still a function of the
capacity factor (k') and the diffusion coefficients of a
certain solute in the mobile (D, ) and stationary phase (D)
[22-25].

Neglecting the k' dependence [26—28] and selecting a
number of components which, under the constant condi-
tions mentioned before, are completely separated on the
column and have virtually equal diffusion coefficients in
the mobile phase, eq. (8) will be sufficiently accurate to
determine N if it is further assumed that Dy, equals Dy,.
According to eq. (8) a value for the external bandspreading,
0‘2,(8,“), can be obtained for every injection volume by
applying the suggested linear regression.

For both calculation methods the results are summarized in
Table IX. As at an injection volume of 90 mm? a complete
separation of all components was no longer observed, the
corresponding values are omitted from this table. At each
injection volume the regression of 6oy, th shows for
both calculation methods a good linear correlation together
with a fairly constant value of the regression coefficient b,
(= 1/Ncol)-

However, in using statistical moments a larger relative
scattering, 8552 /§°%, is observed. The values of 02(eyr) Ob-
tained are also in fair agreement with the values obtained in
the short circuit mode (Tables Il and VI).

Again, first the validity of eq. (2) was checked as described
before and the same results were obtained. In using statis-
tical moments the calculated D values are not constant but a

Table I1X. Values resulting from least square fit according
to eq. (8) for various injection volumes

§n~2
2 an-2 ¥ X
Vinj Oulext)® D Ngg r Syx “obs
Calc. 3

method (mma) {mm™) {s2) (%)
m 2 6.91 - 5858 (0.99250 0.36 11.7
m 4 7.60 1.20 5287 099435 0.34 99
m 8 9.02 1.73 4862 099335 0.41 10.2
m 16 1197 259 4716 099059 050 10.3
m 25 165.06 3.44 4553 098472 0.66 11.0
m 40 19.70 4.66 4274 097949 0.69 8.4
m 60 2588 6576 3928 096362 1.21 10.0

N =4783

SN/N=134%

h 2 495 — 5423 0.99883 0.15 5.0
h 4 547 221 5237 099928 0.12 3.9
h 8 683 2.67 5136 099927 0.13 3.7
h 16 9.80 349 4974 099879 0.17 4.1
h 25 1392 3.65 4906 0.99863 0.18 3.4
h 40 21.52 3.63 5147 099725 0.25 29
h 60 33.28 3.32 6371 098168 053 3.3

h = 'hand’ method N=5313

m = moments SN/-N- =93%

* Calculated from lUt(ext)]tR = ¢ and multiplying with F
{volume flow rate)
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function of Vi;(Vi,;), whereas using ‘hand’ calculation a
fairly constant value of the D*-factor close to its theoretical
value, 4, is observed (Table IX).

The second order regression of a?,(ext), Vin; and the linear
regression Of Gy(ext), Vinj, using the experimental data
points obtained by calculating statistical moments, both
again show a converging picture (Table X). The regression
constants ooy and D obtained by the individual regressions
are virtually identical.

Using experimental data points obtained by ‘hand’ calcula-
tion, diverging results are obtained after regression (disagre-
ement between oy (gy-values and negative coefficient a,),
showing again the inadequacy of this method to proper
describe variances of transient skewing signals (Table X).
The results obtained from the short circuited and normal
mode are compared in Table XI.

The agreement between both modes at the investigated
flow-rate is very striking. A general application of determin-
ing external bandspreading in the normal mode as suggested
by the plotting procedure of eq. (8) still needs more ex-
perimental evidence under different conditions.

Table X. Values resulting from different types of regression
analysis on data pairs from Table I X calculated by different
methods. Normal mode; flow 0.54 em3/min

§n-2
an-2 yX
Calc, vio) P M ' Syx Vobs n
me- Regr. mm3
thod | type (mm3) (mmG) (%)
m | linear| 6.47 |3.05 — | 0.99935] 0.28 |20 7
m | sec. 591 {341 543{0.99997| (1.80) | 0.8
order
h linear{ 1.80 |1.95 — 1099718 0982 |54 5*
h | sec. 6.05 {1.73{—2.28 | 0.99969 {(10.8) 3.8 7
order

* data pairs for Vi,; =2and 4 mm® omitted.

Table XI. Comparison of results obtained from short
circuited and normal modes

an-2
Syx
Calc.| Flow ay(0) D r b | °
me- 3 | Regr. 3
Mode | thod (%% type | (mm”) (%)

s m [ 0.53 [linear 6.39 { 3.61 | 099935 ( 2.3 8
n m | 0.64 (linear 6.47 | 3051099935 | 2.0 7

s m | 0.53 |sec. 6.92 | 3.40 [ 099972 | 3.0
order

n m | 0.54 |sec. 591 | 341 | 099995 | 0.8 7
order

s h | 0.53 [tinear 1.24 {222 0.99885 | 3.9 6
n h |054 [linear | 1.80 | 19509971854 | 5

5 h 0.53 [sec. 544 [ 208099999 | 0.6 8
order

n h 0.54 |[sec. 6.05 | 1.73 (099939 | 3.8 7
order

s: short circuited mode, n: normal mode.
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Comparison of both calculation methods

In using true variances of response functions, calculated by
means of the second moment (M, ), it is obvious that eq. (2)
is not sufficiently accurate to describe external band-
spreading. If inaccurate variances calculated by the ‘hand’
method are applied, however, eq. (2) appears to be fairly
accurate which in itself is very remarkable and probably
accounts for its prolonged use by chromatographers.

Both calculation methods provide data which are very

accurately described by eq. (9a) although those obtained by

the ‘hand’ method show some significant deviations in their
best fit:

1. the constants a; =20y)/D have negative absolute
values for all investigated flows and therefore are pro-
bably physically meaningless;

2. a non-linear relationship between y(exty and Vig; for

injection volumes smaller than 8mm?® leading to 2
disagreement between the oy(g)-values obtained from
linear and second order regression.
This clearly shows that values for external bandspread-
ing obtained from handling of data calculated by the
‘hand’ method are very suspect. D-values obtained from
‘hand’> method data are hardly dependent on the in-
vestigated equations whereas those from second
moment data are. Their respective magnitudes are in
accordance with the predicted theoretical figures and
indicate that in the short circuited mode the injection
profile virtually approaches a slug. If the latter, how-
ever, is neither a slug nor Gaussian significant informa-
tion on its shape can only be obtained by using statis-
tical moments.

Conclusions

A new eq. (9) which accounts for the mutual dependence
of instrument bandspreading, injection volume and input
profile is proposed.

The absolute value of the instrument bandspreading for
Vinj = 0, largely depends on the calculation method applied
and can be evaluated both in a short circuited and normal
mode. The former mode clearly showed a flow dependence
of the investigated parameter which should therefore also
be examined in the normal mode together with changes in
external volume (such as lengths and inside diameter of
tubing and detector cell volumes).

Response functions are completely described by their
statistical moments which therefore should always be
applied if transport phenomena are investigated.

The experimentally obtained injection profile value, D,
shows that for different flow rates and injection volumes
the applied sampling system virtually produces a slug.

The column evaluation method, as suggested in this paper,
needs more experimental evidence and should be investigat-
ed under totally different conditions.
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List of Symbols

dp,d7, a2

bO’bl

Ncol

an—2
S9x

Up
col
Vinj

~abs

2
Ov(ext)
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Coefficients of the parabolic equation applied
in the curve fitting of the data pairs
Coefficients of the linear equation applied in
the curve fitting of the data pairs

Factor depending on input profile and calcula-
tion method

Diffusion coefficient of a solute in the mobile
phase

Average diffusion coefficient of a solute in a
particle of the stationary phase

Average particle diameter of the stationary
phase

Volume flow rate

Capacity factor

Zeroth moment -~

First normalized moment of th(t)dt/M,

Second normalized central moment
J(t—M;)*h(t)dt/M,
0

Number of theoretical plates generated by the
column

Regression coefficient of fitted curves

Modified standard error of estimate for (n—2)
degrees of freedom

Retention time of eluted component

Linear velocity of an unretained component
Column volume

Volume of injected sample

Mean value of the dependent variable for differ-
ent types of regression

Volume variance of concentration profile due
to injection volume, injection device, tubing
and detector (external broadening)

a‘z,(inj) Volume variance of concentration profile due
to injection volume.

oi(ml) Volume variance of the impulse response of the
column

02(0) Equal to 03exy) for Viq; = 0, impulse response
of the instrument

of 0O Time variances of above mentioned concentra.
tion profiles

€ Total porosity of column bed.
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